implement_ml_models

implement_standardscaler

명징직조지훈 2022. 11. 17. 20:32

특성의 범위를 같게 만들어줘 특성 간에 가중치가 동일하게 작동할 수 있도록 만든다.

min-max 스케일링 

데이터에서 최솟값을 뺀 후 최댓값과 최솟값의 차이로 나눈다. 0~1 사이의 값으로 변한다.

class min_max:
  min_data = []
  max_data = []
  deviation = 0

  def __init__(self):
    self.min_data = []
    self.max_data = []

  def min_max_scaling(self, X):
    """
    min_max scaling 함수, 학습과 적용
    Arg:
      X : 스케일링 할 데이터
    Return :
      min-max 스케일링 후 데이터
    """
    x_min = []
    x_max = []
    for i in range(X.shape[1]):
      x_min.append(min(X[:,i]))
      x_max.append(max(X[:,i]))
    
    self.min_data.append(x_min)
    self.max_data.append(x_max)

    x_deviation = [x_max - x_min for x_max, x_min in zip(x_max, x_min)]
    self.deviation = x_deviation
  
    return (X - x_min) / x_deviation

  def transform(self, X):
    return (X - self.min_data) / self.deviation
m = min_max()

m.min_max_scaling(X)
>>>
생성자
array([[0.22222222, 0.625     , 0.06779661, 0.04166667],
       [0.16666667, 0.41666667, 0.06779661, 0.04166667],
       [0.11111111, 0.5       , 0.05084746, 0.04166667],
       [0.08333333, 0.45833333, 0.08474576, 0.04166667],
       [0.19444444, 0.66666667, 0.06779661, 0.04166667],
       [0.30555556, 0.79166667, 0.11864407, 0.125     ],
       [0.08333333, 0.58333333, 0.06779661, 0.08333333],
       [0.19444444, 0.58333333, 0.08474576, 0.04166667],
       [0.02777778, 0.375     , 0.06779661, 0.04166667],
       [0.16666667, 0.45833333, 0.08474576, 0.        ],
       [0.30555556, 0.70833333, 0.08474576, 0.04166667],
       [0.13888889, 0.58333333, 0.10169492, 0.04166667],
       [0.13888889, 0.41666667, 0.06779661, 0.        ],
       [0.        , 0.41666667, 0.01694915, 0.        ],
       [0.41666667, 0.83333333, 0.03389831, 0.04166667],
       [0.38888889, 1.        , 0.08474576, 0.125     ],
       [0.30555556, 0.79166667, 0.05084746, 0.125     ],
       [0.22222222, 0.625     , 0.06779661, 0.08333333],
       [0.38888889, 0.75      , 0.11864407, 0.08333333],
       [0.22222222, 0.75      , 0.08474576, 0.08333333],
       [0.30555556, 0.58333333, 0.11864407, 0.04166667],
       [0.22222222, 0.70833333, 0.08474576, 0.125     ],
       [0.08333333, 0.66666667, 0.        , 0.04166667],
       [0.22222222, 0.54166667, 0.11864407, 0.16666667],
       [0.13888889, 0.58333333, 0.15254237, 0.04166667],
       [0.19444444, 0.41666667, 0.10169492, 0.04166667],
       [0.19444444, 0.58333333, 0.10169492, 0.125     ],
       [0.25      , 0.625     , 0.08474576, 0.04166667],
       [0.25      , 0.58333333, 0.06779661, 0.04166667],
       [0.11111111, 0.5       , 0.10169492, 0.04166667],
       [0.13888889, 0.45833333, 0.10169492, 0.04166667],
       [0.30555556, 0.58333333, 0.08474576, 0.125     ],
       [0.25      , 0.875     , 0.08474576, 0.        ],
       [0.33333333, 0.91666667, 0.06779661, 0.04166667],
       [0.16666667, 0.45833333, 0.08474576, 0.04166667],
       [0.19444444, 0.5       , 0.03389831, 0.04166667],
       [0.33333333, 0.625     , 0.05084746, 0.04166667],
       [0.16666667, 0.66666667, 0.06779661, 0.        ],
       [0.02777778, 0.41666667, 0.05084746, 0.04166667],
       [0.22222222, 0.58333333, 0.08474576, 0.04166667],
       [0.19444444, 0.625     , 0.05084746, 0.08333333],
       [0.05555556, 0.125     , 0.05084746, 0.08333333],
       [0.02777778, 0.5       , 0.05084746, 0.04166667],
       [0.19444444, 0.625     , 0.10169492, 0.20833333],
       [0.22222222, 0.75      , 0.15254237, 0.125     ],
       [0.13888889, 0.41666667, 0.06779661, 0.08333333],
       [0.22222222, 0.75      , 0.10169492, 0.04166667],
       [0.08333333, 0.5       , 0.06779661, 0.04166667],
       [0.27777778, 0.70833333, 0.08474576, 0.04166667],
       [0.19444444, 0.54166667, 0.06779661, 0.04166667],
       [0.75      , 0.5       , 0.62711864, 0.54166667],
       [0.58333333, 0.5       , 0.59322034, 0.58333333],
       [0.72222222, 0.45833333, 0.66101695, 0.58333333],
       [0.33333333, 0.125     , 0.50847458, 0.5       ],
       [0.61111111, 0.33333333, 0.61016949, 0.58333333],
       [0.38888889, 0.33333333, 0.59322034, 0.5       ],
       [0.55555556, 0.54166667, 0.62711864, 0.625     ],
       [0.16666667, 0.16666667, 0.38983051, 0.375     ],
       [0.63888889, 0.375     , 0.61016949, 0.5       ],
       [0.25      , 0.29166667, 0.49152542, 0.54166667],
       [0.19444444, 0.        , 0.42372881, 0.375     ],
       [0.44444444, 0.41666667, 0.54237288, 0.58333333],
       [0.47222222, 0.08333333, 0.50847458, 0.375     ],
       [0.5       , 0.375     , 0.62711864, 0.54166667],
       [0.36111111, 0.375     , 0.44067797, 0.5       ],
       [0.66666667, 0.45833333, 0.57627119, 0.54166667],
       [0.36111111, 0.41666667, 0.59322034, 0.58333333],
       [0.41666667, 0.29166667, 0.52542373, 0.375     ],
       [0.52777778, 0.08333333, 0.59322034, 0.58333333],
       [0.36111111, 0.20833333, 0.49152542, 0.41666667],
       [0.44444444, 0.5       , 0.6440678 , 0.70833333],
       [0.5       , 0.33333333, 0.50847458, 0.5       ],
       [0.55555556, 0.20833333, 0.66101695, 0.58333333],
       [0.5       , 0.33333333, 0.62711864, 0.45833333],
       [0.58333333, 0.375     , 0.55932203, 0.5       ],
       [0.63888889, 0.41666667, 0.57627119, 0.54166667],
       [0.69444444, 0.33333333, 0.6440678 , 0.54166667],
       [0.66666667, 0.41666667, 0.6779661 , 0.66666667],
       [0.47222222, 0.375     , 0.59322034, 0.58333333],
       [0.38888889, 0.25      , 0.42372881, 0.375     ],
       [0.33333333, 0.16666667, 0.47457627, 0.41666667],
       [0.33333333, 0.16666667, 0.45762712, 0.375     ],
       [0.41666667, 0.29166667, 0.49152542, 0.45833333],
       [0.47222222, 0.29166667, 0.69491525, 0.625     ],
       [0.30555556, 0.41666667, 0.59322034, 0.58333333],
       [0.47222222, 0.58333333, 0.59322034, 0.625     ],
       [0.66666667, 0.45833333, 0.62711864, 0.58333333],
       [0.55555556, 0.125     , 0.57627119, 0.5       ],
       [0.36111111, 0.41666667, 0.52542373, 0.5       ],
       [0.33333333, 0.20833333, 0.50847458, 0.5       ],
       [0.33333333, 0.25      , 0.57627119, 0.45833333],
       [0.5       , 0.41666667, 0.61016949, 0.54166667],
       [0.41666667, 0.25      , 0.50847458, 0.45833333],
       [0.19444444, 0.125     , 0.38983051, 0.375     ],
       [0.36111111, 0.29166667, 0.54237288, 0.5       ],
       [0.38888889, 0.41666667, 0.54237288, 0.45833333],
       [0.38888889, 0.375     , 0.54237288, 0.5       ],
       [0.52777778, 0.375     , 0.55932203, 0.5       ],
       [0.22222222, 0.20833333, 0.33898305, 0.41666667],
       [0.38888889, 0.33333333, 0.52542373, 0.5       ],
       [0.55555556, 0.54166667, 0.84745763, 1.        ],
       [0.41666667, 0.29166667, 0.69491525, 0.75      ],
       [0.77777778, 0.41666667, 0.83050847, 0.83333333],
       [0.55555556, 0.375     , 0.77966102, 0.70833333],
       [0.61111111, 0.41666667, 0.81355932, 0.875     ],
       [0.91666667, 0.41666667, 0.94915254, 0.83333333],
       [0.16666667, 0.20833333, 0.59322034, 0.66666667],
       [0.83333333, 0.375     , 0.89830508, 0.70833333],
       [0.66666667, 0.20833333, 0.81355932, 0.70833333],
       [0.80555556, 0.66666667, 0.86440678, 1.        ],
       [0.61111111, 0.5       , 0.69491525, 0.79166667],
       [0.58333333, 0.29166667, 0.72881356, 0.75      ],
       [0.69444444, 0.41666667, 0.76271186, 0.83333333],
       [0.38888889, 0.20833333, 0.6779661 , 0.79166667],
       [0.41666667, 0.33333333, 0.69491525, 0.95833333],
       [0.58333333, 0.5       , 0.72881356, 0.91666667],
       [0.61111111, 0.41666667, 0.76271186, 0.70833333],
       [0.94444444, 0.75      , 0.96610169, 0.875     ],
       [0.94444444, 0.25      , 1.        , 0.91666667],
       [0.47222222, 0.08333333, 0.6779661 , 0.58333333],
       [0.72222222, 0.5       , 0.79661017, 0.91666667],
       [0.36111111, 0.33333333, 0.66101695, 0.79166667],
       [0.94444444, 0.33333333, 0.96610169, 0.79166667],
       [0.55555556, 0.29166667, 0.66101695, 0.70833333],
       [0.66666667, 0.54166667, 0.79661017, 0.83333333],
       [0.80555556, 0.5       , 0.84745763, 0.70833333],
       [0.52777778, 0.33333333, 0.6440678 , 0.70833333],
       [0.5       , 0.41666667, 0.66101695, 0.70833333],
       [0.58333333, 0.33333333, 0.77966102, 0.83333333],
       [0.80555556, 0.41666667, 0.81355932, 0.625     ],
       [0.86111111, 0.33333333, 0.86440678, 0.75      ],
       [1.        , 0.75      , 0.91525424, 0.79166667],
       [0.58333333, 0.33333333, 0.77966102, 0.875     ],
       [0.55555556, 0.33333333, 0.69491525, 0.58333333],
       [0.5       , 0.25      , 0.77966102, 0.54166667],
       [0.94444444, 0.41666667, 0.86440678, 0.91666667],
       [0.55555556, 0.58333333, 0.77966102, 0.95833333],
       [0.58333333, 0.45833333, 0.76271186, 0.70833333],
       [0.47222222, 0.41666667, 0.6440678 , 0.70833333],
       [0.72222222, 0.45833333, 0.74576271, 0.83333333],
       [0.66666667, 0.45833333, 0.77966102, 0.95833333],
       [0.72222222, 0.45833333, 0.69491525, 0.91666667],
       [0.41666667, 0.29166667, 0.69491525, 0.75      ],
       [0.69444444, 0.5       , 0.83050847, 0.91666667],
       [0.66666667, 0.54166667, 0.79661017, 1.        ],
       [0.66666667, 0.41666667, 0.71186441, 0.91666667],
       [0.55555556, 0.20833333, 0.6779661 , 0.75      ],
       [0.61111111, 0.41666667, 0.71186441, 0.79166667],
       [0.52777778, 0.58333333, 0.74576271, 0.91666667],
       [0.44444444, 0.41666667, 0.69491525, 0.70833333]])

표준화 Standardization

평균을 뺀 후 표준편차로 나누어 결과 분포의 분산이 1이 되도록 한다. 표준화는 범위의 상한과 하한이 없다. 

class standardization:
  mean = 0
  std = 0

  def __init__(self):
    self.mean = 0
    self.std = 0

  def standardization(self, X):
    """
    표준화 함수
    Arg:
      X : 표준화할 데이터
    Return : 
      표준화 후 데이터
    """
    self.mean = np.mean(X, axis=0)
    self.std = np.std(X, axis=0)

    return (X-self.mean)/self.std

  def transform(self, X):
    return (X-self.mean)/self.std
    
std = standardization()

std_x = std.standardization(X)

np.mean(std_x)
>>>
-1.4684549872375404e-15

np.var(std_x)
>>>
1.0