2024 ML 다시

1.2 확률론 (조건부 확률, 곱의 법칙)

명징직조지훈 2024. 6. 13. 16:25

X = x_i 인 사례들 중에서 Y = y_j 인 사례들의 비율을 생각해 볼 수 있고, 이를 확률 p(Y = y_j | X = x_i) 로 적을 수 있다.

이를 조건부 확률 conditional probablity 라고 부른다.

이 경우엔 X = x_i 가 주어졌을 경우 Y = y_j 일 조건부 확률이다.

이 확률은 i 행에 있는 전체 포인트 수와 i, j 칸에 있는 포인트 수의 비율을 통해서 계산할 수 있다.

p(Y = y_j | X = x_i) = n_ij / c_i

 

이를 통해 다음의 관계를 도출해 낼 수 있다.

p( X = x_i, Y = y_j ) = n_ij / N = n_ij / c_i * c_i / N = p( Y = y_i | X = x_i ) p(X = x_i)

이것이 확률의 곱의 법칙이다.